- (ii) If the concentration of a nuclide listed in Table 1 exceeds 0.1 times the value listed in Table 1 but does not exceed the value in Table 1, the waste shall be Class C, provided the concentration of nuclides listed in Table 2 does not exceed the value shown in Column 3 of Table 2.
- (6) Classification of wastes with radionuclides other than those listed in Tables 1 and 2. If radioactive waste does not contain any nuclides listed in either Table 1 or 2, it is Class A.
- (7) The sum of the fractions rule for mixtures of radionuclides. For determining classification for waste that contains a mixture of radionuclides, it is necessary to determine the sum of fractions by dividing each nuclide's concentration by the appropriate limit and adding the resulting values. The appropriate limits must all be taken from the same column of the same table. The sum of the fractions for the column must be less than 1.0 if the waste class is to be determined by that column. Example: A waste contains Sr-90 in a concentration of 50 Ci/m3 and Cs-137 in a concentration of 22 Ci/m3. Since the concentrations both exceed the values in Column 1, Table 2, they must be compared to Column 2 values. For Sr-90 fraction 50/150=0.33; for Cs-137 fraction, 22/44=0.5; the sum of the fractions=0.83. Since the sum is less than 1.0, the waste is Class B.
- (8) Determination of concentrations in wastes. The concentration of a radio-nuclide may be determined by indirect methods such as use of scaling factors which relate the inferred concentration of one radionuclide to another that is measured, or radionuclide material accountability, if there is reasonable assurance that the indirect methods can be correlated with actual measurements. The concentration of a radionuclide may be averaged over the volume of the waste, or weight of the waste if the units are expressed as nanocuries per gram.

[47 FR 57463, Dec. 27, 1982, as amended at 54 FR 22583, May 25, 1989; 66 FR 55792, Nov. 2, 2001]

§ 61.56 Waste characteristics.

(a) The following requirements are minimum requirements for all classes of waste and are intended to facilitate handling at the disposal site and provide protection of health and safety of personnel at the disposal site.

- (1) Waste must not be packaged for disposal in cardboard or fiberboard boxes.
- (2) Liquid waste must be solidified or packaged in sufficient absorbent material to absorb twice the volume of the liquid.
- (3) Solid waste containing liquid shall contain as little free standing and noncorrosive liquid as is reasonably achievable, but in no case shall the liquid exceed 1% of the volume.
- (4) Waste must not be readily capable of detonation or of explosive decomposition or reaction at normal pressures and temperatures, or of explosive reaction with water.
- (5) Waste must not contain, or be capable of generating, quantities of toxic gases, vapors, or fumes harmful to persons transporting, handling, or disposing of the waste. This does not apply to radioactive gaseous waste packaged in accordance with paragraph (a) (7) of this section.
- (6) Waste must not be pyrophoric. Pyrophoric materials contained in waste shall be treated, prepared, and packaged to be nonflammable.
- (7) Waste in a gaseous form must be packaged at a pressure that does not exceed 1.5 atmospheres at 20°C. Total activity must not exceed 100 curies per container.
- (8) Waste containing hazardous, biological, pathogenic, or infectious material must be treated to reduce to the maximum extent practicable the potential hazard from the non-radiological materials.
- (b) The requirements in this section are intended to provide stability of the waste. Stability is intended to ensure that the waste does not structurally degrade and affect overall stability of the site through slumping, collapse, or other failure of the disposal unit and thereby lead to water infiltration. Stability is also a factor in limiting exposure to an inadvertent intruder, since it provides a recognizable and non-dispersible waste.
- (1) Waste must have structural stability. A structurally stable waste form

§61.57

will generally maintain its physical dimensions and its form, under the expected disposal conditions such as weight of overburden and compaction equipment, the presence of moisture, and microbial activity, and internal factors such as radiation effects and chemical changes. Structural stability can be provided by the waste form itself, processing the waste to a stable form, or placing the waste in a disposal container or structure that provides stability after disposal.

(2) Notwithstanding the provisions in \$61.56(a) (2) and (3), liquid wastes, or wastes containing liquid, must be converted into a form that contains as little free standing and noncorrosive liquid as is reasonably achievable, but in no case shall the liquid exceed 1% of the volume of the waste when the waste is in a disposal container designed to ensure stability, or 0.5% of the volume of the waste for waste processed to a stable form.

(3) Void spaces within the waste and between the waste and its package must be reduced to the extent practicable.

§61.57 Labeling.

Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with §61.55.

§ 61.58 Alternative requirements for waste classification and characteristics.

The Commission may, upon request or on its own initiative, authorize other provisions for the classification and characteristics of waste on a specific basis, if, after evaluation, of the specific characteristics of the waste, disposal site, and method of disposal, it finds reasonable assurance of compliance with the performance objectives in subpart C of this part.

§61.59 Institutional requirements.

- (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the Federal or a State government.
- (b) Institutional control. The land owner or custodial agency shall carry out an institutional control program to

physically control access to the disposal site following transfer of control of the disposal site from the disposal site operator. The institutional control program must also include, but not be limited to, carrying out an environmental monitoring program at the disposal site, periodic surveillance, minor custodial care, and other requirements as determined by the Commission; and administration of funds to cover the costs for these activities. The period of institutional controls will be determined by the Commission, but institutional controls may not be relied upon for more than 100 years following transfer of control of the disposal site to the owner.

Subpart E—Financial Assurances

§ 61.61 Applicant qualifications and assurances.

Each applicant shall show that it either possesses the necessary funds or has reasonable assurance of obtaining the necessary funds, or by a combination of the two, to cover the estimated costs of conducting all licensed activities over the planned operating life of the project, including costs of construction and disposal.

§61.62 Funding for disposal site closure and stabilization.

(a) The applicant shall provide assurance that sufficient funds will be available to carry out disposal site closure and stabilization, including: (1) Decontamination or dismantlement of land disposal facility structures; and (2) closure and stabilization of the disposal site so that following transfer of the disposal site to the site owner, the need for ongoing active maintenance is eliminated to the extent practicable and only minor custodial care, surveillance, and monitoring are required. These assurances shall be based on Commission-approved cost estimates reflecting the Commission-approved plan for disposal site closure and stabilization. The applicant's cost estimates must take into account total capital costs that would be incurred if an independent contractor were hired to perform the closure and stabilization work.